
Appendix A

Discrete Fourier Transform

The Discrete Fourier Transform (DFT) is a method for finding the frequency components of a signal. 
(It is named after Jean Baptiste Joseph Fourier, an early 19th century French mathematician.)  The 
human ear does something very similar using the cochlea.  The cochlea is a mechanical filter whereas 
the DFT is a mathematical filter.  Both serve a similar purpose in speech recognition, that of 
transforming incoming sound into its frequency components.

Figure A.1 is a spreadsheet example of the DFT to extract the frequency components of a signal S(t). 
In effect, the sine and cosine of various frequencies are correlated against the signal S(t).  Here we 
check only three frequencies since we know apriori the frequencies in S(t).  Normally, for the 32 
sample signal shown, 16 frequencies would be checked (16 sine and/or cosine values = 32 
coefficients).  These are cos(nωt), n = 0,..,16, and sin(nωt), n = 1,...,15.  This insures that all of the 
energy in the time domain signal is accounted for in the frequency domain representation.

The important point to note here from the spreadsheet is that each frequency component may be found 
independently of the others.  That is, the determination of the magnitude of sin(nω tj) or cos(nω tj) is 
found by calculating

An=
∑
j=0

j=M−1

cos (n⋅ω⋅t j)⋅S (t j)

∑
j=0

j=M−1

cos2(n⋅ω⋅t j)
and  Bn=

∑
j=0

j=M−1

sin(n⋅ω⋅t j)⋅S (t j)

∑
j=0

j=M−1

sin2(n⋅ω⋅t j)
(1)

where M = Number of Samples.

All this begs the question, how did this formula come about.  Why would anyone think to multiply two 
sequences together (say  sin(nω tj) and S(tj) ) and then sum the individual products?  The answer lies in 
the Method of Least Squares, one of the most powerful concepts in applied mathematics.  It underlies 
Kalman filters, pattern recognition, machine learning, and, of course, regression analysis, among 
others.  See the Wikipedia entry  http://en.wikipedia.org/wiki/Least_squares.

The German mathematician Karl Friederich Gauss is credited with the discovery of the Method of 
Least Squares.  Independently, the French mathematician Adrien-Marie Legendre discovered the 
method also.  Much to the chagrin of Gauss, Legendre  actually published before Gauss.  This led to a 
feud between these two great mathematicians.

Briefly, the method finds the coefficients cn in a mathematical model (e.g., c0+c1⋅x+c2⋅x
2 ) that 

minimizes the sum of the squares of the difference between a given data set (sequence of numbers) and 
the model.  That is, for our simple polynomial example:
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 ∑
j=0

j=M−1

(S j – (c0+c1⋅x j+c2⋅x j
2))2 = minimum (2)

Using differential calculus (differentiating with respect to c0, c1, c2 and setting each result equal to zero), 
it is straightforward to show that this minimization leads to three simultaneous linear equations in c0, c1, 
c2:

c0⋅ ∑
j=0

j=M−1

1+c1⋅ ∑
j=0

j=M−1

x j⋅1+c2⋅ ∑
j=0

j=M−1

x j
2⋅1= ∑

j=0

j=M−1

S j⋅1 (3a)

c0⋅ ∑
j=0

j=M−1

x j+c1⋅ ∑
j=0

j=M−1

x j
2+c2⋅ ∑

j=0

j=M−1

x j
3= ∑

j=0

j=M−1

S j⋅x j (3b)

c0⋅ ∑
j=0

j=M−1

x j
2+c1⋅ ∑

j=0

j=M−1

x j
3+c2⋅ ∑

j=0

j=M−1

x j
4= ∑

j=0

j=M−1

S j⋅x j
2 (3c)

While there are many methods for solving simultaneous linear equations, if the mathematical model 
consists of sines and cosines whose frequency corresponds to integer multiple wavelengths of the 
sample segment interval (the DFT meets this requirement), then each equation reduces to:

An⋅ ∑
j=0

j=M−1

cos2(n⋅ω⋅t j)= ∑
j=0

j=M−1

cos(n⋅ω⋅t j)⋅S (t j) (4a)

 

Bn⋅ ∑
j=0

j=M−1

sin2(n⋅ω⋅t j)= ∑
j=0

j=M−1

sin (n⋅ω⋅t j)⋅S (t j) (4b)

which may be readily solved for An and Bn, as shown on the previous page.

If all of this just seems like so many Greek characters, the spreadsheet of Figure A.1 is an illustration of 
this process.  Column A is the time in milliseconds, column B is the angle ωtj.  The angular frequency 
ω is chosen such that ω∆T = 2π.  ∆T is the sample segment interval.

Columns C through H are the numerical values of the sines and cosines of nωtj, n = 1, 2, 3 at the times 
tj = 0, 1, …, 31.  Similarly, column I contains the numerical values of the assumed signal 

S(tj) =  2*Sin(ωtj)  -  3*Cos(2ωtj) + 1*Sin(3ωtj).

If we sum the products of any two pair of columns C through I, we obtained the 6 x 7 array at the 
bottom of the page.  The left 6 x 6 array confirms that the sum of products of columns C through H that 
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are paired with themselves are non-zero.  This is another way of illustrating the orthogonality of the 
sine and cosine functions in the interval ∆T with ω = 2π / ∆T.  The summations on the left side of 
equations (4a) and (4b) are the non-zero result (= M/2 = 16 in the spreadsheet).

The seventh column is the sum of the products of columns C through H paired with column I.  This is 
the right side of equations (4a) and (4b).

Thus, to find the An and Bn, we need only divide the results in the last column by the non-zero result in 
the same row of the 6 x 6 array.  Thus,

B1 = 32/16 = 2,     A1 = 0,    B2 = 0,      A2 = -48/16 = -3,      B3 = 16/16 = 1,      and A3 = 0.

The coefficients recovered are identical to the coefficients in our assumed signal S(t).  The lower right 
corner spreadsheet calculation obtains the same result.

Interestingly, if we calculate the power in S(t) and in the frequency components, we find they are equal.

First, the frequency components:

P(An, Bn) = 1
2∑n=1

3

(An
2+Bn

2)

      = {22 + (-3)2 +12}/2 = 7

The factor 1/2 is required because the components are peak values, not RMS.

The power in the signal S(tj) is:

P(S(t)) = 1
M ∑

j=0

j=M−1

S (t j)
2 = 7  (From the spreadsheet)

This is calculation is from the spreadsheet.  The fact that P(An, Bn) = P(S(t)) is known as Parcival's 
Theorem.  In effect, no energy is lost or gained transforming from the time domain to the frequency 
domain.

As a final comment, the Fast Fourier Transform produces the same result, but takes advantage of 
certain redundancies in the calculation if M is a power of 2, e.g. 2, 4, 8, 16, 32, 64, etc.  See the 
Wikipedia entry  http://en.wikipedia.org/wiki/Fast_Fourier_transform.

The functioning spreadsheet may be found on the CD-ROM.
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Figure A.1

A Simple Non-Rigorous Example of Frequency Component Determination

3.14152  Samples = 32
0.19635 32 \------------------------V-----------------------/

A B C D E F G H I
t S(t)
0 0 0 1 0 1 0 1 -3
1 0.2 0.2 0.98 0.38 0.92 0.56 0.83 -1.83
2 0.39 0.38 0.92 0.71 0.71 0.92 0.38 -0.43
3 0.59 0.56 0.83 0.92 0.38 0.98 -0.2 0.94
4 0.79 0.71 0.71 1 0 0.71 -0.71 2.12
5 0.98 0.83 0.56 0.92 -0.38 0.2 -0.98 3.01
6 1.18 0.92 0.38 0.71 -0.71 -0.38 -0.92 3.59
7 1.37 0.98 0.2 0.38 -0.92 -0.83 -0.56 3.9
8 1.57 1 0 0 -1 -1 0 4
9 1.77 0.98 -0.2 -0.38 -0.92 -0.83 0.56 3.9
10 1.96 0.92 -0.38 -0.71 -0.71 -0.38 0.92 3.59
11 2.16 0.83 -0.56 -0.92 -0.38 0.19 0.98 3.01
12 2.36 0.71 -0.71 -1 0 0.71 0.71 2.12
13 2.55 0.56 -0.83 -0.92 0.38 0.98 0.2 0.94
14 2.75 0.38 -0.92 -0.71 0.71 0.92 -0.38 -0.43
15 2.95 0.2 -0.98 -0.38 0.92 0.56 -0.83 -1.83
16 3.14 0 -1 0 1 0 -1 -3
17 3.34 -0.2 -0.98 0.38 0.92 -0.56 -0.83 -3.72
18 3.53 -0.38 -0.92 0.71 0.71 -0.92 -0.38 -3.81
19 3.73 -0.56 -0.83 0.92 0.38 -0.98 0.19 -3.24
20 3.93 -0.71 -0.71 1 0 -0.71 0.71 -2.12
21 4.12 -0.83 -0.56 0.92 -0.38 -0.2 0.98 -0.71
22 4.32 -0.92 -0.38 0.71 -0.71 0.38 0.92 0.66
23 4.52 -0.98 -0.2 0.38 -0.92 0.83 0.56 1.64
24 4.71 -1 0 0 -1 1 0 2
25 4.91 -0.98 0.19 -0.38 -0.92 0.83 -0.56 1.64
26 5.1 -0.92 0.38 -0.71 -0.71 0.38 -0.92 0.66
27 5.3 -0.83 0.56 -0.92 -0.38 -0.19 -0.98 -0.71
28 5.5 -0.71 0.71 -1 0 -0.71 -0.71 -2.12
29 5.69 -0.56 0.83 -0.92 0.38 -0.98 -0.2 -3.24
30 5.89 -0.38 0.92 -0.71 0.71 -0.92 0.38 -3.81
31 6.09 -0.2 0.98 -0.38 0.92 -0.56 0.83 -3.72

S(t) The matrix at left implies:
(for this example)

16 0 0 0 0 0 32
The above property of the sines and cosines is orthogonality.  We may use this property to

0 16 0 0 0 0 0 easily find the frequency components of a signal.

0 0 16 0 0 0 0

0 0 0 16 0 0 -48

0 0 0 0 16 0 16 for S(t) and  n = 1, 2, 3, (using the precomputed values from the array at left), 
yields the following:

0 0 0 0 0 16 0
2 0 0 -3 1 0

Parcival's Theorem: 7  = Power in frequency components = {22 + (-3)2 + 12}

 π  = S(t) = 2*Sin(ωt)  -  3*Cos(2ωt) + Sin(3ωt)
ω = 2*π / ∆T = ∆T = 

ωt Sin(ωt) Cos(ωt) Sin(2ωt) Cos(2ωt) Sin(3ωt) Cos(3ωt)

Sin(ωt) Cos(ωt) Sin(2ωt) Cos(2ωt) Sin(3ωt) Cos(3ωt)  Σ[Sin(nωt)*Sin(mωt)]   = 16, if m = n, = 0 otherwise
 Σ[Cos(nωt)*Cos(mωt)]  = 16, if m = n, = 0 otherwise

Sin(ωt)  Σ[Sin(nωt)*Cos(mωt)]  = 0, all m, n

Cos(ωt)

Sin(2ωt) If S(t) = 2*Sin(ωt)  -  3*Cos(2ωt) + 1*Sin(3ωt)  (See Column I,S(t)),  then computing 
Σ[Sin(nωt)*S(t)] / Σ[Sin(nωt)*Sin(nωt)]  and  

Cos(2ωt) Σ[Cos(nωt)*S(t)] / Σ[Cos(nωt)*Cos(nωt)] 

Sin(3ωt)

Cos(3ωt) Sin(ωt) Cos(ωt) Sin(2ωt) Cos(2ωt) Sin(3ωt) Cos(3ωt)
                Above entries are the sum of products of the row and column functions, e.g.,  Σ[Cos(2ωt)*Sin(3ωt)].

Power in signal S(t) = {ΣS(tj)2} / Samples =
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